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We applied a lumped aquifer representation to the entire ESPA
(same domain as IDWR, 2014). Fluxes are both distributed (natural
and incidental recharge, abstractions), and point (losing streams, and ————
head-dependent springs). Lumped Aquifer
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4 criteria assessed model performance for natural and human controls of basin
hydrology. Forced outflows at three major reservoirs in lieu of networked

operations; a critical control in system
(Rougé H14F-08).
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Parameterizations of irrigation tech-
nology modernization.

We altered the distribution of surface
(flood) to sprinklers for Eff. A—Eff.E. Baseline 1.0 0.83 1.0 0.00

i
Then we increased the fraction of di- EffA 0.89 082 0.95 0.10
drio) irrication for Eff.F— Eff | EffB 0.86 0.80 0.8 0.10

rect (drip) irrigation for Eff.F—Eff.l. EffC 0.82 0.70 0.60 0.10
We also represented declining propor- EffD 0.77 0.60 0.40 0.10

5

tions of open-surface conveyances EffE 0.73 030 02 0.10
tchi , g 4 EffF 0.53 0.40 0.15 0.33
(switching to pipes), and represente EFEG 0.40 0.30 0.10 0.50
lining of all canals. EffH 0.27 0.15 0.05 0.67

Eff1 0.0 0.0 0.0 1.00
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Modernizing irrigation technology and implementing Enhanced Aquifer Re-
charge are adaptations to reduce drawdown in stressed aquifers. How does

100

modernizing irrigation technology reduce the system scale reuse of incidental re-

turns, and does recharge mitigate the Joss of this “source” of water?

Effective Irrigation Efficiency increased more slowly than
Classical Irrigation Efficiency when simulated technologies were modernized.

When coupled with enhanced recharge, reuse through actual

—=— without recharge
—o— with recharge

Effective irrigation efficiency (%)

recovery increases the effectiveness of modernization.

+*" More modernized irrigation technology ———»

Increasing recovery is the key to adaptation in conjunctively managed systems. 40 S0 60 70 8 9 100

Classical irrigation efficiency (%)

As both adaptations increase, changes in outlet discharge more closely match aquifer Reuse of returns declines with increasing efficiency of irrigation tech-
drawdown (never perfectly), approaching parity between aquifer and downstream shortfalls. nology, but recharge resulted in more AND more effective reuse.
0‘ As technology modernizes, less recharge is needed than incidental returns lost. @ Irrigation reuse was always greater with recharge represented.
@ Increasing irrigation efficiency yields greater drawdown than discharge gained. @ Beneficial consumption of reuse increased with recharge.
@‘ Enhanced aquifer recharge at an efficiency level exceeded drawdown without. ° Reuse was underestimated in the model.
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Left: Recharge required above baseline to stabilize aquifer plotted against the reduced irrigated percola-

fion from baseline. At 95% classical efficiency (CIE) the benefit overcomes baseline recharge requirement. [N
Terminology
Right: Aquifer d el is al ter than the chy i tlet disch f baseline. . P . - .
RPAACHIIET CERTEIN T ELTEYS EIAE N G MEL CES I el R beneficial Evapotranspiration of supplied irrigation water by crops (FAO56).
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than 10% of baseline drawdown. reuse Abstraction of prior returns for irrigation.

gﬁ“;‘ “ . B Drawdown is less than recharge required. baseline Flux or storage at contemporary best model estimate.
3§ o == Solid lines (bottom) depict the negotiated re- [RLLLES
_\s'z’lg‘ charge mandate (lower), and the estimated [ERUCAAELES Balance Model (WBM) is a rasterized, conceptual hydrologic
j maximum feasible recharge capacity (upper). model with explicit representations of irrigation technology, dams, and

sectoral water allocations. Daily time-step. 780m resolution.

Setting and experimental design Fate of Abstractions
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WBM tracks incidental returns through each pool and flux within the model,

permitting characterization of the ultimate fate of all returns. The system-scale
diagram below represents fates that are proportional to each flux at baseline.
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The Upper Snake River Basin (USRB) of southern Idaho is semi-arid with robust dairy and com-
modity crop agriculture supported by seasonal snow melt and the highly productive Eastern
Snake Plain Aquifer (ESPA). Surface irrigation from 1900-1950 added storage to ESPA.
Recent adjudication requires aquifer storage to remain at current head. Conjunctive manage-
ment focuses on managed recharge, with continued irrigation technology modernization.
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